Exact Criterion for Global Existence and Blow Up to a Degenerate Keller-Segel System
نویسندگان
چکیده
A degenerate Keller-Segel system with diffusion exponent m with 2n n+2 < m < 2 − 2 n in multi dimension is studied. An exact criterion for global existence and blow up of solution is obtained. The estimates on L 2n n+2 norm of the solution play important roles in our analysis. These estimates are closely related to the optimal constant in the HardyLittlewoodSobolev inequality. In the case of initial free energy less than a universal constant which depends on the inverse of total mass, there exists a constant such that if the L 2n n+2 norm of initial data is less than this constant, then the weak solution exists globally; if the L 2n n+2 norm of initial data is larger than the same constant, then the solution must blow-up in finite time. Our result shows that the total mass, which plays the deterministic role in two dimension case, might not be an appropriate criterion for existence and blow up discussion in multi-dimension, while the L 2n n+2 norm of the initial data and the relation between initial free energy and initial mass are more important. 2010 Mathematics Subject Classification: 34A34, 35A01, 35K44.
منابع مشابه
Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion
Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d ≥ 2 and in all of space for d ≥ 3, the uniqueness being a result ...
متن کاملBlow up of solutions to generalized Keller–Segel model
The existence and nonexistence of global in time solutions is studied for a class of equations generalizing the chemotaxis model of Keller and Segel. These equations involve Lévy diffusion operators and general potential type nonlinear terms.
متن کاملCritical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data
The goal of this paper is to exhibit a critical mass phenomenon occuring in a model for cell self-organization via chemotaxis. The very well known dichotomy arising in the behavior of the macroscopic Keller-Segel system is derived at the kinetic level, being closer to microscopic features. Indeed, under the assumption of spherical symmetry, we prove that solutions with initial data of large mas...
متن کاملGlobal Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion
The L-critical parabolic-elliptic Patlak-Keller-Segel system is a classical model of chemotactic aggregation in micro-organisms well-known to have critical mass phenomena [10, 8]. In this paper we study this critical mass phenomenon in the context of Patlak-Keller-Segel models with spatially varying diffusivity and decay rate of the chemo-attractant. The primary tool for the proof of global exi...
متن کاملCross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model
Abstract. A (Patlak-) Keller-Segel model in two space dimensions with an additional crossdiffusion term in the equation for the chemical signal is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical substance. This allows one to prove, for arbitrarily small cross diffusion, the global existence of ...
متن کامل